433Mhz remote sockets - Part 2

As mentioned previously, the kit I bought has 2 sockets. But knowing that the remote can control 4 (it has a total of 8 buttons), it would be good to be able to use the remaining unused buttons. And why not, since the state of the socket can't be retrieved, to intercept and store the current state.

Lacrosse/Digispark receiver

It happens that I already have a 433Mhz reception system which was recently extended.

Maybe there is a way to squeeze yet another protocol?

It turned out that it was quite easy to do without much interference to the existing two decoding pipelines!

Meet the 433Mhz receiver

433Mhz Receiver

Basically, the signal from the remote will appear as a series of High pulses which are shorter (~ 320µS & ~ 960µS) compared to the one from the sensors (~ 500µS/1300µS and 1900µS/3800µS). If a string of these specific pulses is detected, then we switch to the remote decoder.

The signal being sent at least 3 times from the remote, this mean that we can intercept the second or the third transmission. The transmission itself starts with a "very long" pulse (31 times the base pulse). The encoding is based on a tri-state system which basically means, since we can ignore the floating state, that every other bit must always be a 1. The data consists in the address part, the button part and the state (ON/OFF) repeated but inversed.

For example:

1010111010 1110101010 1110

can be decoded in (checking then removing all the odd bits):

00100 10000 10

and interpreted as:

Code

Since there is now a little bit more than Lacrosse sensor decoding, I renamed the project on GitHub to 433Mhz receiver...

The code can now be found at the following address: https://github.com/guillier/433mhz_receiver

And now?

Since I embraced the MQTT protocol, I added the conversion and now any touch on the remote control is translated into something like (to carry on with the example above):

The first part is complete. Hooking up a 433 Mhz emitter (remember this?) on the Raspberry Pi is easy but for both technical and whimsical reasons, I have something else in mind...

    433Mhz remote sockets - Part 1

    Purchase

    A few days ago, as I was in a nearby DIY store (looking for something I didn't find in the end), I came by the Electricity aisle and noticed cheap remote sockets. These are a not new thing, I owned some more than 25 years ago — so unstable there were switching on and off randomly — and in France at least, the Belgian company Chacon made a successful product (DI.O) with this kind if items.

    One of the major issue with them is that they are without any feedback of the status like you could have on a modern "smart plug". Yet, where a Z-wave socket alone is at least 40€, here a pack of 2 sockets was less than 15€ including the remote and its battery. The "manual" includes a EC Declation of Confirmity so I assume there are safe to use. The power is limited to 1000W but for Christmas lights, this is not an issue!

    YC-2000B

    Obviously, the idea was also the do the reverse engineering on the protocol and if possible try to emulate the remote itself like I did several times in the past. Turns out that this very model of remote is used in dozens of packs and the circuit inside is well known and even officially documented!

    Protocol and Home Automation

    A quick search show pages and pages on the subject. These one are now called "Smart Home" but were previously sold under the Phenix brand by IDK. Protocol seems virtually identical to the Elro Home Easy plugs.

    The main references about the subject seem to be:

    The next question was: What is the best to integrate these elements in the existing installation? There are two main parts for this: controlling the sockets but also making the most of the remote (especially the two unused ON/OFF buttons).

    As usual... A suivre!

    New 433Mhz sensors

    La Crosse sensors

    As described last year, I own a La Crosse Weather Station to which I added several additional (TX2 & TX3) sensors.

    Trouble is, as the technology is phased out in favor of a 868Mhz based one, these sensors are harder to come by and are also a bit pricey.

    Chance

    Unexpectedly, I noticed a news about a firmware update of the RFXtrx433E from RFXCom talking about a well known chinese online shop's version of a sensor. Indeed, I was able to become the owner of a "433MHz Wireless Weather Station Digital Thermometer Humidity Sensor" for the very lucky price of US$8.88 all included.

    433MHz Wireless Weather Station Digital Thermometer Humidity Sensor

    Protocol

    These sensors are apparently compatible with the Alecto WS1700 ones. The protocol was decoded and published on the Pilight wiki and forums.

    It looked simple enough so I decided to modify my Arduino/Digispark script in order to decode it as well.

    Pulses

    Yet there was a catch! La Crosse TX3 protocol uses a variation of pulses on the high level with timing on the low level being almost identical (and ignored by my decoder's implementation).

    For the WS1700... it's the opposite! Hence only a succession of 37 identical 500µS pulses was the only thing seen.

    Also, the signal finishes by a "very long" (~9200µS) Low and, as usual with this kind of device, the whole sequence is repeated several times.

    As an example, the pulses are like this :

    H540 L1890  <-- detect
    H540 L3780  <-- detect
    H540 L1890  <-- detect
    H540 L3780  <-- detect
    H540 L3780  <-- detect
    H540 L3780  <-- detect
    H540 L3780  <-- detect
    H540 L3780 <-- detect
    [...]
    H540 L3780
    H540 L9180 <-- synchronise
    (and again)
    H540 L1890 <-- check
    H540 L3780 <-- check
    H540 L1890 <-- check
    H540 L3780 <-- check
    H540 L3780 <-- read
    [...]
    H540 L9180 <-- validate
    (and again)
    H540 L1890
    [...]
    

    If we detect at least 8 continous short high pulses, then we know it's not a TX3 sensor but probably a Alecto compatible one and therefore from now on only low pulses will be read.

    The strategy is then to wait for very long pulse, read the full signal, checking the header (~1900µS ~3800µS ~1900µS ~3800µS), and at last validating with the last pulse which should be again a very long one.

    The new algorithm is represented in the following flowchart:

    Flowchart

    Reporting

    • The Id, which is randomly generated when inserting new batteries -- same as TX3 -- is ignored... I will assume that nobody else has a compatible sensors around and use the channel number instead.

    • Channel (there is a physical switch to select it) is coded 00=CH1, 01=CH2, 02=CH3. This will be my sensor ID because it is fixed. But to avoid any clash, I add 1001 so CH1=1001, CH2=1002, CH3=1003.

    • Battery will be reported as OK or KO.

    • There is a small button at the back of the sensor to force the emission. Apart for tests, it is not that useful and we can ignore the bit reporting this.

    • Temperature is in 10th of degrees Celcius so value is divided by 10. Negative values are taken care of as well.

    • Humidity is straight out the signal received except if not read properly (0%).

    Code

    Code, now compatible with Lacrose TX2/3/4 & Alecto WS1700, can be used on Digispark/Arduino. See the github repository: https://github.com/guillier/la_crosse_sensors

    Lacrosse, Digispark, Raspberry Pi, Roundup

    Quite happy with the results from the current setup, I decided to complete my collection of sensors with a WSTX3-TH to put on the front balcony.

    WSTX3-TH

    As a free bonus, since I moved to the final version (from prototype breadboard to a PCB one with all the necessary pins properly grounded), I seem to receive the signal from a neighbouring sensor as well. With 3 temperature readings from outdoors, I think I'm covered for the winter!

    Code is available on github :https://github.com/guillier/la_crosse_sensors

    Schematic is quite simple:

    Schematic

    Time to move on (and to concentrate on the main programme, maybe?)

    Page 1 / 2 »